INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, 2022-23

Statistics - III, Backpaper Examination, June, 2023

Time: 2 Hours Total Marks: 50

- 1. Let $\mathbf{Y} \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Find the conditional distribution of $\mathbf{Y'Y}$ given $\mathbf{a'Y} = 0$ where \mathbf{a} is a non-zero constant vector. [8]
- **2.** Consider the model $\mathbf{Y} = \mathbf{X}\beta + \epsilon$, where $\mathbf{X}_{n \times p}$ has **1** as its first column and rank $r \leq p$, and $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$.
- (a) If $\hat{\beta}$ is the least squares solution of β , show that $(\hat{\beta} \beta)' \mathbf{X}' \mathbf{X} (\hat{\beta} \beta)$ is distributed independently of the residual sum of squares.
- (b) Find the maximum likelihood estimator of σ^2 . Is it unbiased?
- (c) Explain how the coefficient of determination, R^2 , can be used to check the quality of the fitted linear model. [6+6+6]
- **3.** Consider the following model:

$$y_1 = \theta + \gamma + \epsilon_1$$

$$y_2 = \theta + \phi + \epsilon_2$$

$$y_3 = 2\theta + \phi + \gamma + \epsilon_3$$

$$y_4 = \phi - \gamma + \epsilon_4$$

where ϵ_i are uncorrelated having mean 0 and variance σ^2 .

- (a) Show that $\gamma \phi$ is estimable. What is its BLUE?
- (b) Find the residual sum of squares. What is its degrees of freedom? [8+6]
- **4.** Let Y be a response variable and X_1, \ldots, X_k be covariates. Also, let r_i denote the correlation coefficient between Y and X_i , and let R denote the multiple correlation coefficient between Y and X_1, \ldots, X_k .
- (a) Show that $R \ge \max\{|r_i|, 1 \le i \le k\}$.
- (b) What is the exact relationship between R and r_i 's when k = 1? [5+5]