INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, 2022-23
 Statistics - III, Backpaper Examination, June, 2023
 Time: 2 Hours
 Total Marks: 50

1. Let $\mathbf{Y} \sim N_{n}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$. Find the conditional distribution of $\mathbf{Y}^{\prime} \mathbf{Y}$ given $\mathbf{a}^{\prime} \mathbf{Y}=0$ where \mathbf{a} is a non-zero constant vector.
2. Consider the model $\mathbf{Y}=\mathbf{X} \beta+\epsilon$, where $\mathbf{X}_{n \times p}$ has 1 as its first column and rank $r \leq p$, and $\epsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$.
(a) If $\hat{\beta}$ is the least squares solution of β, show that $(\hat{\beta}-\beta)^{\prime} \mathbf{X}^{\prime} \mathbf{X}(\hat{\beta}-\beta)$ is distributed independently of the residual sum of squares.
(b) Find the maximum likelihood estimator of σ^{2}. Is it unbiased?
(c) Explain how the coefficient of determination, R^{2}, can be used to check the quality of the fitted linear model.
$[6+6+6]$
3. Consider the following model:
$y_{1}=\theta+\gamma+\epsilon_{1}$
$y_{2}=\theta+\phi+\epsilon_{2}$
$y_{3}=2 \theta+\phi+\gamma+\epsilon_{3}$
$y_{4}=\phi-\gamma+\epsilon_{4}$,
where ϵ_{i} are uncorrelated having mean 0 and variance σ^{2}.
(a) Show that $\gamma-\phi$ is estimable. What is its BLUE?
(b) Find the residual sum of squares. What is its degrees of freedom? $[8+6]$
4. Let Y be a response variable and X_{1}, \ldots, X_{k} be covariates. Also, let r_{i} denote the correlation coefficient between Y and X_{i}, and let R denote the multiple correlation coefficient between Y and X_{1}, \ldots, X_{k}.
(a) Show that $R \geq \max \left\{\left|r_{i}\right|, 1 \leq i \leq k\right\}$.
(b) What is the exact relationship between R and r_{i} 's when $k=1$? $\quad[5+5]$
